

Rapid communication

Activation of dopamine D₃ autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo

Françoise Lejeune, Mark J. Millan *

Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France Received 6 February 1995; accepted 14 February 1995

Abstract

The firing rate of dopaminergic neurones in the ventral tegmental area of anaesthetised rats was dose-dependently $(0.31-5.0 \, \mu g/kg \, i.v.)$ inhibited by the dopamine D_3 receptor agonist, (+)-7-OH-DPAT (7-hydroxy-2-(di-n-propylamino)tetralin). The selective dopamine D_3 receptor antagonist, (+)-S 14297 ((+)-[7-(N,N-dipropylamino)-5,6,7,8-tetrahydro-naphtho(2,3b)dihydro,2,3-furane]), dose-dependently (16–125 $\mu g/kg \, i.v.$) inhibited the action of (+)-7-OH-DPAT (5 $\mu g/kg \, i.v.$); its inactive distomer, (-)-S 17777 (125 $\mu g/kg \, i.v.$), was ineffective. Alone, (+)-S 14297 (125 $\mu g/kg \, i.v.$) did not modify the firing rate. Haloperidol (16 $\mu g/kg \, i.v.$) fully reversed the action of (+)-7-OH-DPAT and, alone, significantly increased firing rate. These data suggest that inhibitory (dendritic) dopamine D_3 (auto)receptors control the electrical activity of ventral tegmental area-localised dopaminergic neurones.

Keywords: Dopamine D₃ receptor; Ventral tegmental area; Dopamine

Neuroanatomical studies have revealed mRNA encoding dopamine D₃ receptors in the ventral tegmental area, the origin of dopaminergic projections to the limbic system and cortex (Bouthenet et al., 1991). Further (+)-7-OH-DPAT (7-hydroxy-2-(di-n-propylamino)tetralin), a preferential agonist at dopamine D3 versus D₂ receptors (Chio et al., 1993) inhibits the release of dopamine in limbic structures, an action markedly attenuated by (+)-S 14297 ((+)-[7-(N,N-dipropylamino)-5,6,7,8-tetrahydronaphto(2,3b)dihydro, 2,3-furane]), a selective antagonist at dopamine D₃ versus D₁, D₂, D₄ and D₅ receptors (Millan et al., 1994; Rivet et al., 1994; unpublished observation). Such studies have not, however, established whether putative dopamine D₃ (auto)receptors, localised on the dendrites of dopaminergic neurones, control the electrical activity of these pathways. Herein, we addressed this question.

Male Wistar rats of 300 ± 25 g were anaesthetised with chloral hydrate (400.0 mg/kg i.p.), a tungsten

electrode lowered into the ventral tegmental area and dopaminergic neurones identified and recorded as described by Wang (1981), i.e., type I cells showing a slow, rhythmic pattern of firing and a characteristic wave-form. Drugs were dissolved in sterile water and injected i.v. into the cannulated femoral vein. Cumulative dose-response curves were performed for (+)-7-OH-DPAT with consecutive injections every 2 min. After an injection of 5 μ g/kg (+)-7-OH-DPAT (a just maximally effective dose), cumulative dose-response curves were performed for reversal of its actions by (+)-S 14297. By administration of a single dose (125) μ g/kg), the action of (+)-S 14297 was, further, compared to that of its inactive distomer, (-)-S 17777 (125 μ g/kg) and to that of haloperidol (16 μ g/kg). Electrode positions were verified by histology.

The firing rate was rapidly, dose-dependently and completely inhibited by (+)-7-OH-DPAT (Fig. 1). The action of (+)-7-OH-DPAT, which showed some spontaneous reversal over the period of antagonist administration, was dose-dependently (though only submaximally) reversed by (+)-S 14297 (Fig. 1). Administered at a single dose, (+)-S 14297 also attenuated the action of (+)-7-OH-DPAT without affecting the firing rate alone. This effect was stereospecific in that its

^{*} Corresponding author. Institut de Recherches Servier, Centre de Recherches de Croissy, Department of Psychopharmacology, 125, Chemin de Ronde, 78290 Croissy-sur-Seine (Paris), France. Tel. 33.1.41.18.24.25, fax 33.1.41.18.24.70.

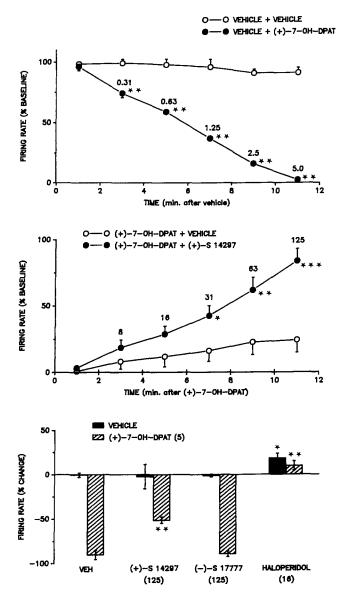


Fig. 1. Influence of dopamine D₃ receptor ligands upon the electrical activity (firing rate) of dopaminergic neurones of the ventral tegmental area of the anaesthetized rat in vivo. Data are means ± S.E.M. of firing rate (60 s bin after administration) expressed as a percentage of basal values: 3.5 ± 0.2 Hz (overall mean \pm S.E.M., n = 62). Upper panel: Dose-dependent reduction of firing rate by cumulative doses (shown above time, in $\mu g/kg$ i.v.) of (+)-7-OH-DPAT. Analysis of variance with repeated measures as follows: vehicle + vehicle, F(5,15)= 1.1, P > 0.05 and vehicle + (+)-7-OH-DPAT, F(5,20) = 111.2, P <0.001. The inhibitory dose $_{50}$ (95% confidence limits) for (+)-7-OH-DPAT was 0.8 (0.3-2.0) µg/kg i.v. Middle panel: Dose-dependent inhibition of the action of (+)-7-OH-DPAT by cumulative doses (shown above time, in $\mu g/kg$ i.v.) of (+)-S 14297. (+)-7-OH-DPAT +vehicle, $F(5,20) \approx 4.89$, P = 0.004 and (+)-7-OH-DPAT+(+)-S14297, F(5,30) = 26.6, P < 0.001. For both panels, asterisks indicate significance of differences to corresponding vehicle values in Newman-Keuls' test, *P < 0.05 and * *P < 0.01. Lower panel: Influence of a single dose of (+)-S 14297, (-)-S 17777 or haloperidol upon firing rate following vehicle or (+)-7-OH-DPAT. ANOVA for vehicle pretreatment, F(3,16) = 4.04, P = 0.025. ANOVA for (+)-7-OH-DPAT pretreatment, F(3,17) = 108.9, P < 0.001. Asterisks indicate significance of differences to corresponding vehicle in Dunnett's test, ${}^*P < 0.05$ and ${}^{*}{}^*P < 0.01$.

inactive distomer, (-)-S 17777, did not modify the action of (+)-7-OH-DPAT. Haloperidol, at a dose of 16 μ g/kg i.v., completely blocked the action of (+)-7-OH-DPAT and slightly, but significantly, enhanced the firing rate alone.

The present data show that the selective antagonist at rat and human dopamine D3 versus D2 receptors, (+)-S 14297 (Millan et al., 1994; Rivet et al., 1994) attenuates the (+)-7-OH-DPAT-induced reduction in the firing rate of ventral tegmental area dopaminergic neurones. Importantly, the action of (+)-S 14297 was stereospecific in that its inactive distomer, (-)-S 17777, did not modify the action of (+)-7-OH-DPAT. Interestingly, further, the action of (+)-7-OH-DPAT was stereospecific in that (-)-7-OH-DPAT, which has lower affinity at D_3 sites (71 nM) than (+)-7-OH-DPAT (1.8 nM) (Rivet et al., 1994), was active only at a markedly (30-fold) higher dose range (10-200 μ g/kg i.v.; not shown). These findings strongly suggest a role of dopamine D₃ sites in the control of the electrical activity of ventral tegmental area-derived dopaminergic neurones. Further, the present findings are in line with the ability of (+)-S 14297 - as compared to (-)-S 17777 - to attenuate (but not abolish) the inhibitory influence of systemic (+)-7-OH-DPAT upon release of dopamine in the nucleus accumbens (Rivet et al., 1994). Interestingly, transfected D₃ receptors couple negatively and positively to Ca2+ and K+ currents, respectively, offering mechanisms whereby D₃ receptors may inhibit neuronal activity and the release of dopamine (Seabrook et al., 1994; Tang et al., 1994).

The very low (μ molar) affinity of (+)-S 14297 for D_1 , D_4 and D_5 sites suggests that these are unlikely to be involved in the present findings (unpublished observation; Millan et al., 1994). Nevertheless, an action of (+)-7-OH-DPAT at dopamine D_2 in addition to D_3 sites is possible. Indeed, the relative selectivity of (+)-7-OH-DPAT at D₃ versus D₂ sites depends upon their precise affinity states and may not be as great as originally thought (Chio et al., 1993). This would explain why (+)-S 14297 achieves only sub-total inhibition of the influence of (+)-7-OH-DPAT upon ventral tegmental area firing rate and dopamine release whereas haloperidol, which equipotently antagonises both dopamine D₂ and D₃ sites, completely reverses the actions of (+)-7-OH-DPAT (Fig. 1; Rivet et al., 1994).

In contrast to haloperidol, (+)-S 14297 administered alone, did not increase the firing rate of ventral tegmental area neurones. Similarly, in distinction to haloperidol, (+)-S 14297 does not facilitate the release of dopamine in the nucleus accumbens (Rivet et al., 1994). These findings suggest that dopamine D_3 autoreceptors may show little tonic activity and that the intrinsic, excitatory action of haloperidol reflects blockade of dopamine D_2 autoreceptors (Silvia et al., 1994).

The mechanistic differences underlying this difference between dopamine D_3 and D_2 sites, for example, in terms of second messenger coupling and receptor reserve, will be of interest to determine. On the other hand, it is possible that simultaneous blockade of both dopamine D_3 and D_2 sites, as achieved with haloperidol, may be required to activate dopaminergic neurones. Selective blockade of D_3 sites by (+)-S 14297 may simply allow for dendritic dopamine to occupy dopamine D_2 autoreceptors.

In conclusion, employing the selective dopamine D_3 versus D_2 antagonist, (+)-S 14297, the present data suggest that inhibitory D_3 receptors, presumably localized dendritically in the ventral tegmental area, control the electrical activity of dopaminergic neurones. The present data do *not*, nevertheless, question the existence of ventral tegmental area-localized D_2 autoreceptors. Further, the potential existence of D_3 autoreceptors on dopaminergic terminal remains to be examined. These findings reinforce the concept of a functional relationship between dopamine D_3 receptors and psychiatric disorders such as drug abuse, depression and schizophrenia.

Acknowledgements

We thank C. Le Roy for secretarial assistance and M. Spedding for helpful comments on the manuscript.

References

- Bouthenet, M.-L., E. Souil, M.-P. Martres, P. Sokoloff, B. Giros and J.-C Schwartz, 1991, Localization of dopamine D₃ receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D₂ receptor mRNA, Brain Res. 564, 203.
- Chio, C.L., M.E. Lajiness and R.M. Huff, 1993, Activation of heterologously expressed D₃ dopamine receptors: comparison with D₂ dopamine receptors, Mol. Pharmacol. 45, 51.
- Millan, M.J., V. Audinot, J.-M. Rivet, A. Gobert, J. Vian, J.-F. Prost, M. Spedding and J.-L. Peglion, 1994, (+)-S 14297, a novel selective ligand at cloned human dopamine D₃ receptors, blocks (+)-7-OH-DPAT-induced hypothermia in rats, Eur. J. Pharmacol. 260, R3.
- Rivet, J.-M., V. Audinot, A. Gobert, J.-L. Peglion and M.J. Millan, 1994, Modulation of mesolimbic dopamine release by the selective dopamine D₃ receptor antagonist, (+)-S 14297, Eur. J. Pharmacol. 265, 175.
- Seabrook, G.R., J.A. Kemp, S.B. Freedman, S. Patel, H.A. Sinclair and G. McAllister, 1994, Functional expression of human D₃ dopamine receptors in differentiated neuroblastoma×glioma NG 108-15 cells, Br. J. Pharmacol. 111, 391.
- Tang, L., R.D. Todd and K.L. O'Malley, 1994, Dopamine D₂ and D₃ receptors inhibit dopamine release, J. Pharmacol. Exp. Ther. 270, 475.
- Silvia, C.P., G.R. King, T.H. Lee, Z.Y. Xue, M.G. Caron and E.H. Ellinwood, 1994, Intranigral administration of D₂ dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D₂ autoreceptors in the motor actions of cocaine, Mol. Pharmacol. 46, 51.
- Wang, R.Y., 1981, Dopaminergic neurons in the rat ventral tegmental area. I. Identification and characterization, Brain Res. Rev. 3, 123